
31: Multi touch support implementation in Pharo

François Lepan
Benjamin Van Ryseghem

Author: Stéphane Ducasse

24th May 2013

2

Thanks
We would like to especially thank Stéphane Ducasse who proposed the subject

and also guide us along the whole project.

We would like to thank Igor Stasenko for the work he did about events, and
the explanation he gave us to be able to continue his work.

We also would like to thank Esteban Lorenzano for his tips about design and
his help for understanding and modifying the virtual machine.

We would like to thank the whole team. It was a real pleasure to work with
you.

We also would like to thank the reviewers: Camillo Bruni and Damien Cassou.

3

Résumé
Dans le cadre de notre Projet Individuel (PJI), nous avons eu l’opportunité
d’implémenter un support pour les événements multi-touches dans l’environement
de développement Pharo, au sein de l’équipe RMoD d’Inria. Ce projet s’inscrit
dans la continuité du travail effectué lors du précédent semestre au cours du
Projet Encadré (PJE) qui était l’implémentation simplifié de gestion de gestes
en Java.

Le but de se projet est de fournir un support modulaire et évolutif pour
la reconnaissante et l’analyse de geste en Smalltalk, afin de faire de Pharo le
premier Smalltalk supportant les événements multi-touches.

Abstract
During our Projet Individuel (PJI) at Inria in the RMoD team, we had the
chance to implement a multi-touch support for the Pharo environment. This
project continues the work done during last semester in the lecture Projet En-
cadré (PJE). This project consisted of a basic implementation of gesture recog-
nition in Java.

The goals of our project are to propose an evolving and modular support
for gesture analysis and recognition in Pharo to make it the first Smalltalk
implementation supporting multi-touch events.

Contents

1 Introduction 5

2 Context 7
2.1 The RMoD team . 7
2.2 Pharo in a nutshell . 8

2.2.1 What is Smalltalk ? . 8
2.2.2 Smalltalk Basics . 8
2.2.3 Some Basic Code Lines 8
2.2.4 The Virtual Machine . 11

2.3 Pharo and Events . 11

3 Challenges 15
3.1 Current Problems in Pharo . 15
3.2 Goals of the Project . 15

4 The Cthulhu project 17
4.1 Refactoring of the System Event Hierarchy 17
4.2 Getting Operating System Events 18
4.3 Gesture recognition . 18
4.4 Implementation of a State Machine 19
4.5 Virtual machine modification . 21

5 Conclusion 23
5.1 Technical Results . 23
5.2 Human results . 23

5.2.1 Integration in Research Group 23
5.2.2 Pharo, a living community 24

5.3 Conclusion . 24

Chapter 1

Introduction

Currently student at the Université Lille 1 in Villeneuve d’Ascq in the second
semester of the computer science master degree, we had to do a project proposed
by a researcher along the whole semester. We have done the project proposed
by Stéphone Ducasse, head of the RMoD team at Inria. We had previously been
in contact with Dr. Ducasse since Benjamin Van Ryseghem has done several
internships at his team. We submitted to this project since it was close to
what we had done during the last semester and we wanted to continue on this
interesting topic. Moreover the Pharo community is really looking forward a
multi-touch solution as the industry is in need of such technology.

Context: Smalltalk is an object-oriented language whose first implementation
was in 1972 and leads to major user-interface improvements like multi-threaded
UIs, the MVC pattern, a UI framework based on the composite pattern (with
Morphic) and a lot more. But now Smalltalk lays behind compared to what
other languages and integrated development environment propose. To tackle
this situation, Pharo is bridging this gap between what the other IDE proposed
and what Pharo proposes in term of user interaction since year 2009 to propose
a powerful development environment. Cthulhu , as we have named this project,
aims to provide a multi-touch support for Pharo.

Problems: The main problem is that the whole event infrastructure of Pharo
was designed far before ideas such as multi-touch appeared. Due to this, the
events infrastructure was not meant to support multi-touch. In addition, the
handling of basic system events like scrolling are handled directly by the vir-
tual machine. Because of that, it is difficult to modify the handling of events.
Moreover, the Smalltalk philosophy is to have a dynamic system. Since the vir-
tual machine needs to be recompiled each time a change is done, it is impossible
to change its behaviour on the fly.

Another problem is that information about events available at image side
provided by the virtual machine is not in a dedicated object but in a low-level
array. Due to that only few people have the knowledge about the construction
and how to interpret the data stored in those arrays.

6 CHAPTER 1. INTRODUCTION

Goals: The goal of the Cthulhu project is to provide a dynamic, evolutive
and modular support for gesture analysis and recognition in Pharo. We wanted
Cthulhu to be modular to allow one to add his or her own gestures easily without
needing to have deep knowledge about our implementation. In addition, part
of the Pharo philosophy is that a system should always be evolving in order not
to die. That is the main reason to make our project infrastructure as clear as
possible to ease the Cthulhu evolution. In a nutshell the goals are:

• fix the system events infrastructure;

• add multi touch events to the current infrastructure;

• implement a modular gestures analyser covered by automated unit tests;

• plug the virtual machine events to this new infrastructure.

Contributions: Our contributions to this project was to:

• initiate the project;

• fix and improve Igor Stasenko’s work about system events;

• implement a gesture analyser with a state machine;

• add test coverage for gesture analysing (with possibility to record gesture
and replay them in the context of a unit test);

• generate complex events according to the gesture analysis.

Chapter 2

Context

In this chapter we introduce the environment we worked in during our project
in three parts, the team we were working with, the language we used and the
current situation of Pharo about events.

2.1 The RMoD team
Presentation: The goal of the RMoD team is to help remodularisation of
object-oriented applications. This goal follows two complementary lines: reen-
gineering and definition of new constructs for programming languages. To help
reengineering, new analyzation techniques are proposed in order to understand
and remodularise big applications (specialised metrics, adapted visualisations,
etc). In the context of programming languages, constructors for the modular-
ity features and new systems modules validation are performed. The team is
also working on a secured kernel for Pharo, an IDE for Smalltalk used and
maintained by the team.

Application remodularization: The evolution of an application is limited
by strong dependencies between its inner parts. That is why it is crucial to
answer the following questions: “How can we substitute a part by another one
with minimal impact?”, “How to identify reusable elements?” and “How to
modularise an application when there are bad references?”. Answering those
questions is the goal of Moose, the software analysis environment used by the
team. Moose provides a set of analyzation techniques. This work is divided in
tree parts :

• Tools to understand big applications (packages/modules);

• Analysis for remodularization;

• Software quality;

• Meta-tools to help build new analyses and new tools.

Semantic elements for modularity. This second line focuses on the defin-
ition of new semantic elements for languages in order to construct flexible and

8 CHAPTER 2. CONTEXT

reconfigurable software. The team continues its efforts on Traits and Classboxes
and also works on new areas such as security in dynamic languages. RMoD
works on:

• the definition of a Traits-only language and;

• reconciliation between reflective languages and security.

2.2 Pharo in a nutshell
Pharo is the development environment used by the team as part of the com-
munity, therefore this is the language we used for our project. To understand
the challenges we faced we briefly present Smalltalk and its main characteristics.

2.2.1 What is Smalltalk ?
Smalltalk is an object-oriented, reflective, dynamically-typed programming lan-
guage.

• Object-oriented: Smalltalk programs are made of objects which commu-
nicate using messages (like in Java or C++)

• Reflective: any object can inspect and modify its own structure at runtime
(like Java, but to a much greater extent)

• Dynamically typed: variables do not have a type at compilation, only
values have types

• Everything is an object: objects are the sole kind of runtime value

2.2.2 Smalltalk Basics
Smalltalk is based on two classes which constitute the conceptual core of this
system, Object and Class. In Figure 2.1 you can see that each element cannot
exist alone. The bootstrap1 is the process which leads to this state. However,
since Class and Object need other objects such as strings, characters, streams,
numbers. The real bootstrap is more complex.

The most important thing to know is that a bootstrap is a process where a
system is initialising itself via its own execution. It is close to the Chicken or
egg dilemma where each one deeply depends on the other one.

2.2.3 Some Basic Code Lines
Here are few examples of Smalltalk code to know how to read further examples:

"Variables declaration"
| variable1 variable2 |

"Instance creation"
1the term bootstrap is often attributed to Rudolf Erich Raspe’s story The Surprising Ad-

ventures of Baron Munchausen

2.2. PHARO IN A NUTSHELL 9

Class

Object

instance of
inherits from
class
object

Figure 2.1: Class and Object bootstrap

variable1 := Point new.
"Instance setting"
variable1 x: 1.
variable1 y: 2.

variable2 := Point new.
variable2 x: 1.
variable2 y: 2.

"Equality versus Identity"
variable1 = variable2. true
variable1 == variable2. false

Here, we can see three things :

• new : a class method that creates a new instance of the receiver. E.g.
“Point new” sends the message #new to the class Point which is also an
object.

• = : tests if two objects represent the same object, it is a logical equality. It
is a message, asking the receiver (before =) whether it is the same object
as the argument (after the =).

• == : tests if two objects point to the same reference, it is a physical
equality i.e., identity. It is a message as well.

Let us see a basic method of the Integer class:

Integer>>plus: integer1 andPlus: integer2

^ self + integer1 + integer2

10 CHAPTER 2. CONTEXT

This method can be invoked using the following snippet:

5 plus: 3 andPlus: 7

and returns 15.
In the fictional example, we learn three new things:

• the colon : the way to specify parameters to most methods.

• self : the receiver of the method (similar to this in Java).

• the caret ˆ : it allows you to return a value.2By default a method returns
self i.e., the receiver.

This method is equivalent to public int plusAndPlus(int x, int y) in
Java.

A method is often referred to by the notation Class�#selector to have
a unique way to refer to a method. So the method we just saw is noted
Integer�#plus:andPlus:. One more example to see the last syntax elements,
a method of class Class:

Class>>copyMethodDictionary
"This method answers a copy of my method dictionary"

| result |
result := SortedCollection new sort: [:m1 :m2 | m1 selector < m2 selector].
self methodDictionary do: [:method |

result add: method.
Transcript

show: method selector asString, ’ added.’;
cr].

^ result

Here we have :

• "some text" : a comment.

• [:argument | code] : a block (a λ-expression). They act like anonymous
methods where arg is an argument of the block that is used to execute
the code. In addition it captures its creation environment. It is a lexical
closure.

• receiver m1; m2 : a cascade of messages. It means that the receiver of the
second method (m2) is the same that the receiver of the first method (m1)
receiver, in this case receiver.

Now, you know the syntax of Smalltalk.

2You can sometime see ↑ instead.

2.3. PHARO AND EVENTS 11

2.2.4 The Virtual Machine
As in some other languages (especially Java), Smalltalk’s methods are converted
and interpreted by a VM. In fact, the Smalltalk compiler analyses the code then
creates a CompiledMethod which is a representation of the method but including
more information ready to be executed by a bytecode interpreter or JustInTime
translator.

• the bytecode : the source code converted into a language that the VM can
interpret

• the literals : represent low-level objects such as numbers true, false and
strings that are referenced and read by the scanner at compilation time.
Other kinds of literals store pointers to the classes referred into method’s
source code

Method

Let us see an example, String�#copy :

copy

| string |
string := String new: (self size).
self doWithIndex: [:character :index |

string at: index put: character].
^ string

First, let us explain what this method does :

• | string | : declares a new variable named string.

• string := String new: (self size) : creates a new instance of the class String
with its size set to the size of the receiver and then stores the created
string in the variable named string.

• self doWithIndex: [:character :index | : iterates over the receiver and for each
character we store the element in the variable character end the index of
the element in the variable index.

• string at: index put: character : at the index index of string, we put char-
acter.

• ˆ string : we finally return the variable string.

In a nutshell, this method basically parses the receiver (which is a String) and
fills up a new String with the same characters at the same indices.

2.3 Pharo and Events
Currently the Pharo event handling is mainly done by the VM. Indeed the
virtual machine is currently responsible of transforming the operating system
events into an event representation forwarded to the image. In addition, the

12 CHAPTER 2. CONTEXT

Pharo object responsible for dispatching events to the correct graphical widget
is the widget corresponding to the mouse pointer.

Since the historical implementation, the whole system infrastructure has
evolved a lot. Efforts have been made to take profit of this infrastructural
changes and to make the event handling properly dispatched and managed.

But right now, this events are still represented in the system as an array
with magical values corresponding to mouse position, or pressed button. By
example the first item of the array correspond to the World3 in which the event
should be propagated. Even so the notion of multiple worlds has been dropped
a long time ago. In addition, the knowledge about how to convert this array
into a real event object belongs to the mouse pointer widget which is not really
object-oriented since it induces a double responsibility for the mouse pointer
widget class.

Virtual Machine

Operating System

event

array

HandMorph

event

Pharo Image

Figure 2.2: The propagation form a system event to Pharo

In the Figure 2.3 you can see how an event from the operating system is
propagated to Pharo. First the event is caught by the virtual machine which
does some computation. The result of this computation is stored in an array
and forwarded to the image. Finally, the HandMorph class4 compute the virtual
machine array. This computation results in the generation of a Pharo events
which is then propagated through the widgets.

One problem of this infrastructure is the double computation where only one
computation is needed. Moreover, the fact that the part of the computation is
done inside the virtual machine reduces the access to the computation logic,
and limits the computation logic modifications as well. Pharo boasts about

3Equivalent to workspace in Linux or Mac OSX.
4The class of the mouse pointer widget

2.3. PHARO AND EVENTS 13

being self documented since all the source code is directly accessible, all the
logic encapsulated in the virtual machine breaks this assumption.

Another issue with this infrastructure is that it makes difficult to simulate
the generation of an event since the computation and the dispatch are encap-
sulated inside only one class. Having those two steps separated would ease the
simulation of events propagation.

In a nutshell the current event implementation is for old, difficult to under-
stand because of structural issues, and should be fixed in order to provide an
object-oriented way to handle events.

Chapter 3

Challenges

In this chapter we first list the problems encountered in Pharo related to events
and then define the goals of our project.

3.1 Current Problems in Pharo
The current Pharo system has problems for easily handling multi-touch gestures
at different levels:

• The virtual machine is partially interpreting the operating system events
while the interpretation should only be done on image side to allow modi-
fication;

• The fact that the virtual machine provides on image side an array with
magic values reducing the understanding of generated events;

• The lack of decoupling in the event array computation and generated event
propagation;

• The fact that the event generation on instance side is done in the inap-
propriate object.

3.2 Goals of the Project
Reimplementing the event infrastructure. Starting from Igor Stasenko’s
work, we need an image-side event hierarchy that can be easily extended to
fit gesture triggered events. The infrastructure also needs to provide a good
abstraction of the virtual machine events array in order to offer a better under-
standing of Pharo low-level events manipulation.

Implement a gesture analyser. Once the event is caught by the image,
it then needs to be analysed in order to trigger the system event fitting best
the gesture performed by the user. The analyser needs to be extendable to
provide the opportunity for future users to extend the field of possible gestures
recognised.

16 CHAPTER 3. CHALLENGES

Virtual Machine modification. The virtual machine has to be modified to
not transform operating system events but to forward them directly to the image
in order to delegate the understanding and analyses of the events to the image.
This way the event computation will be in only one place and the underlying
computation logic will be able to be modified at run time.

Chapter 4

The Cthulhu project

Cthulhu1 is a project whose goal is to implement a multi-touch event support
for Pharo. The projects has been splitted in 5 different parts: refactoring of the
events hierarchy, getting operating-system events from the virtual machine, ges-
tures recognition itself, implementation of a state machine and virtual machine
modification.

4.1 Refactoring of the System Event Hierarchy
Goal: The goal is to have an event infrastructure that can be extended to
support evolution.

Problems:

• How to modify the events implementation without breaking the image?

• How to make the infrastructure extendable?

Solutions:

• The solution proposed should be able to modify the event implementation
without breaking the image. The solution should also provide an altern-
ative infrastructure pluggable in place of the current one, and to revert
the change if any error happens.

• To make the infrastructure able to evolve along with Pharo it has been
decided to use a command pattern for the gestures. Indeed if one wants to
add a new event he or she will only have to add a new class extending the
class named SystemInputEvent. The Figure 4.1 shows the class hierarchy
of SystemInputEvent. All subclasses of SystemInputEvent should imple-
ment the method #accept: used for a double dispatch pattern. Here is an
example of such a #accept: method:

SystemKeyboardInputEvent>>#accept: anObject
^ anObject handleKeyboardInputEvent: self

1Because of the multiple tentacles

18 CHAPTER 4. THE CTHULHU PROJECT

If one wants to add his or her own event inside this hierarchy, only an
#accept: method is needed as long as the method properly dispatch its
behaviour.

SystemInputEvent

SystemComplexInputEvent DoubleFingerSwipeEvent ... UnknownSystemInputEvent

Figure 4.1: The SystemInputEvent hierarchy

4.2 Getting Operating System Events
Goal: The goal is to retrieve events performed by the user to be able to analyse
them and to generate the according gesture.

Problems:

• How to retrieve events from the operating system without modifying the
Pharo virtual machine?

• How to inject these events into the Pharo event handling mechanism?

Solutions:

• To retrieve event from the operating system we used TUIO which is a pro-
tocol for multi-touch events. TUIO retrieves the multi-touch gestures from
the hardware and then generates events for each finger on the device. We
used Tongseng2, a software that generates TUIO events from the trackpad.

• To inject the received events into Pharo, we used a TUIO client imple-
mentation made by Simon Holland3 that parses TUIO events and creates
Smalltalk objects for cursors and blobs. Then we were able to use those
objects to simulate operating system events.

4.3 Gesture recognition
Goal: The goal is to recognise gestures performed by the user. Theses gestures
can be a click, a swipe, a scroll, etc.

2Fajran Iman Rusadi - https://github.com/fajran/tongseng
3http://mcl.open.ac.uk/sh/squeakmusic.html

https ://github.com/fajran/tongseng
http ://mcl.open.ac.uk/sh/squeakmusic.html

4.4. IMPLEMENTATION OF A STATE MACHINE 19

Problems:

• How to make to distinguish two different gestures?

• How to easily define a new gesture?

Solutions:

• To make the difference between two gestures we analyse the blob related
to the event. Then we use the Naive Bayes4 algorithm to categorise the
event as the most probable gesture.

• To let one add a new gesture we used a command pattern to dispatch the
responsibility of managing the received event to the correct analyser. The
Figure 4.2 presents the class hierarchy of GestureAnalyzer. The following
code shows how the correct analyser is chosen when it comes to update a
cursor:

updateCursor: aBlobCursor
| matchingHandlers events |

matchingHandlers := self handlers select: [:analyzer | analyzer handleUp-
date].

events := matchingHandlers collect: [:each | each updateCursor: aBlob-
Cursor].

events do: [:each | each ifNotNil: [self eventAnnouncer announce: each]]

For each analyser (named handler in this method), it is asked if the
analyser can handle the current event. Then the analyser matching the
current event interpret the event and its blob to produce events. Finally
the generated events are propagated through the system. IF one want to
add here a new analyser, he or she needs to subclass GestureAnalyzer and
to implement the method #handleUpdate to make it returns true in the
needed situation. Here is an example of #handleUpdate:

OneBlobGestureAnalyzer>>#handleUpdate
^ self numberOfBlobs == 1

This method means that the OneBlobAnalyzer is the analyser to use when
only one blob is invalided i.e., only one finger is used.

4.4 Implementation of a State Machine
Goal: The goal is to let the user perform a gesture and reduce the noise in-
troduced by variations in gesture parameters which could lead to a wrongly
analysed result. A state machine is used to keep the context of the currently

4https://en.wikipedia.org/wiki/Naive_Bayes_classifier

https://en.wikipedia.org/wiki/Naive_Bayes_classifier

20 CHAPTER 4. THE CTHULHU PROJECT

GestureAnalyzer

OneBlobGestureAnalyzer TwoBlobsGestureAnalyzer

Figure 4.2: The GestureAnalyzer hierarchy

performed gesture to improve accuracy while categorising the event into a ges-
ture. Moreover, for accuracy reasons, while a state has been set, the state
machine sticks to this state until one blob disappears i.e., a finger is removed
from the input hardware.

Problems:

• What is the threshold before actually switching to a definitive state?

• How to ensure the correctness of the analysis?

Solutions:

• In order to switch to another state we first go through discovering-states
showing the will to switch to another state. If enough same discovering-
states have been consecutively triggered then the state machine switch to
the according state. By example, while the user wants to perform a swipe
gesture, it may happened that because of the human factor, an event is
analysed as a rotating gesture. In this case, the state machine instead of
directly switching to the ROTATING state first go through a discovering-
state named PREROTATING pointing that the user may would like to do
a rotation. Then if the same discovering-state is computed five5 times in
a row, the state machine switch to the real state: ROTATING.

• To ensure the correctness of the analysis we implemented unit tests cov-
ering the analyses. This way we were able to reproduce exactly the same
scenario until the result actually matches the expected result. To get more
precise tests, we implemented a gesture recorder and a gesture player. The
first one to record a real gesture, and the latter one to replay this gesture
during a unit test.

5This value is a setting chosen by experimentation.

4.5. VIRTUAL MACHINE MODIFICATION 21

4.5 Virtual machine modification
Goal: The goal is to analyse events not in the virtual machine but directly in
the Pharo image where the behaviour can be modified on the fly. This part is
related to the retrieval of operating system events addressed in section 4.2.

Problems:

• How to modify the virtual machine to make them forward the events to
the image?

• How to access the hardware events from the virtual machine to prevent
the operating system gesture analyses?

Solutions: This part has not been done yet since the four people in the world
knowing the Pharo virtual machine were too busy to help us doing this. We
approached Esteban Lorenzano who told us that it is doable and we will work
with him during this summer in order to validate this approach.

Chapter 5

Conclusion

5.1 Technical Results
We have learned a lot of technical details during our project at many levels.
Here is a non-exhaustive list of things we have learned or deepened.

Programming language. We already knew Smalltalk before the beginning
of this project, but we have improved our knowledge about the Smalltalk lan-
guage. Especially because we borrowed a lot of books from the lab, in particular
the ones about dynamic languages. Thanks to Smalltalk, and the fact that you
can inspect living objects, we now understand more deeply object-oriented lan-
guages.

Pharo. By analysing the Pharo system event architecture then the whole
system, we have read a lot of code and this way we learned a lot about the
Pharo internal structures. The Cthulhu project allows us to think at the precise
definition of event hierarchy. Thanks to this analysis, we now have a better
comprehension of modularity.

English. The team being multi-cultural with people from several countries,
English is used all the time for internal communication. Moreover, all the mails
shared on the Pharo mailing list are in english too.

5.2 Human results
5.2.1 Integration in Research Group
Even if we learned a lot of technical details, humanly we discovered a new work-
ing environment inside the RMoD team, where communication and autonomy
are really important.

• Communication is the backbone of the research work whether written or
oral. Moreover, we have often taken a seat and asked questions to team
members, and spent hours sharing ideas and test them. A large part of
ideas used in Cthulhu were born this way, and it was really pleasant to
work this way.

24 CHAPTER 5. CONCLUSION

• The autonomy in work was important too because we have to make our
own schedule and to learn how to manage our time. Moreover, we were
alone working on the Cthulhu project, so we had to set a rhythm by
ourselves.

We also had multiple points of view on the work of a researcher, which is the
job Benjamin Van Ryseghem would like to do. Moreover, the team being multi-
cultural, we have learned some cultural parts from Argentinian culture (like
Alfajores), or Ukrainian. It was really cool to practice our english with people
from all over the world.

5.2.2 Pharo, a living community
Beside working for Inria, we worked as active members of the Pharo community.
Benjamin Van Ryseghem developed some projects before doing this project.
Those projects have been improved and integrated into the current version of
Pharo. These improvements have been done with the help of other members
of the community especially during sprints (coding session). The community is
really reactive and any question, from the dumbest ones to the most specific
ones, can be asked on the mailing list, you will always get an answer.

In a nutshell: It was really a good experience which we hope to reproduce.
We really like to manage a project by ourselves, and to schedule our work alone.

5.3 Conclusion
Context: After the project we did last semester, we wanted to deepen our
knowledge about event handling and how to disambiguate the gesture recogni-
tion. Moreover the Pharo community was looking forward for a real multi-touch
event support made real by Stéphane Ducasse while proposing this topic. Hope-
fully this project will lead to the first Smalltalk implementation of multi-touch
gesture recognition.

Goal: The goal of this project was to implement a gesture analyser able to
be extended and to provide unambiguous gesture for Pharo events handling
mechanism. In parallel, we had to fix the Pharo infrastructure to ease the
events modularity.

Problems: The most important problems we encountered were:

• How to get operating system events into Pharo?

• How to fix the event infrastructure to let us generate the wanted events?

• How to make the state machine flexible enough to always have the state
matching the user’s will?

• How to implement an extendible architecture for gesture analysers?

Solution: After structural refactorings we implemented a gesture analyser
easily supporting extensions as well as a state machine based on a known al-
gorithm to categorise events based on a set of references.

Next Steps: The next steps will be to modify the different virtual machines
to make them directly forward operating system events to the image and to
delegate events analyses to the image. Another step will be to improve the
categorisation algorithm by keeping track of analysed gestures as references for
future categorisations.

Conclusion: As a conclusion, Cthulhu provides a fully tested and working
support for multi-touch events as well as an extendable analyser architecture.
Starting from the work of Igor Stasenko about system events refactoring, we
finished the refactoring and implemented from scratch an architecture of ana-
lysers. The open source implementation is fully available on SmalltalkHub1.
Along the development we also fixed the Pharo internal infrastructure to make
it fit our needs. Additionally we also clean some old and obsolete code.

1http://smalltalkhub.com/#!/~BenjaminVanRyseghem/PJI

http://smalltalkhub.com/#!/~BenjaminVanRyseghem/PJI

Résumé
Dans le cadre de notre Projet Individuel (PJI), nous avons eu l’opportunité
d’implémenter un support pour les événements multi-touches dans l’environement
de développement Pharo, au sein de l’équipe RMoD d’Inria. Ce projet s’inscrit
dans la continuité du travail effectué lors du précédent semestre au cours du
Projet Encadré (PJE) qui était l’implémentation simplifié de gestion de gestes
en Java.

Le but de se projet est de fournir un support modulaire et évolutif pour
la reconnaissante et l’analyse de geste en Smalltalk, afin de faire de Pharo le
premier Smalltalk supportant les événements multi-touches.

Abstract
During our Projet Individuel (PJI) at Inria in the RMoD team, we had the
chance to implement a multi-touch support for the Pharo environment. This
project continues the work done during last semester in the lecture Projet En-
cadré (PJE). This project consisted of a basic implementation of gesture recog-
nition in Java.

The goals of our project are to propose an evolving and modular support
for gesture analysis and recognition in Pharo to make it the first Smalltalk
implementation supporting multi-touch events.

	Introduction
	Context
	The RMoD team
	Pharo in a nutshell
	What is Smalltalk ?
	Smalltalk Basics
	Some Basic Code Lines
	The Virtual Machine

	Pharo and Events

	Challenges
	Current Problems in Pharo
	Goals of the Project

	The Cthulhu project
	Refactoring of the System Event Hierarchy
	Getting Operating System Events
	Gesture recognition
	Implementation of a State Machine
	Virtual machine modification

	Conclusion
	Technical Results
	Human results
	Integration in Research Group
	Pharo, a living community

	Conclusion

